- **1 a** For all
 - **b** There exists
 - c For all
 - d For all
 - e There exists
 - f There exists
 - g For all
- **2 a** True
 - **b** False
 - **c** True
 - **d** False
 - **e** False
- **3 a** There exists a natural number n such that $2n^2-4n+31$ is not prime
 - **b** There exists $x \in \mathbb{R}$ such that $x^2 \leq x$
 - **c** For all $x \in \mathbb{R}, 2+x^2 \neq 1-x^2$
 - **d** There exists $x,y\in\mathbb{R}$ such that $(x+y)^2
 eq x^2 + y^2$
 - **e** For all $x,y\in\mathbb{R},x\geq y$ implies $x^2\geq y^2$ (Intent)
 - **a** If we let n=31 it is clear that

$$2n^2 - 4n + 31 = 2 \times 31^2 - 4 \times 31 + 31$$

is divisible by 31 and so cannot be prime.

b Let x = 1 and y = -1 so that

$$(x+y)^2 = (1+(-1))^2 = 0,$$

while.

$$x^2 + y^2 = 1^2 + (-1)^2 = 1 + 1 = 2,$$

c If $x = \frac{1}{2}$, then,

$$x^2 = \frac{1}{4} < \frac{1}{2} = x.$$

d If n=3 then,

$$n^3 - n = 27 - 3 = 24$$

is even, although 3 is not.

- e If m=n=1 then m+n=2 while mn=1.
- **f** Since 6 divides $2 \times 3 = 6$ but 6 does not divide 2 or 3, the statement is false.
- **5 a** Negation: For all $n\in\mathbb{N}$, the number $9n^2-1$ is not a prime number.

$$9n^2 - 1 = (3n - 1)(3n + 1),$$

and since each factor is greater than 1, the number $9n^2 - 1$ is not a prime number.

b Negation: For all $n \in \mathbb{N}$, the number $n^2 + 5n + 6$ is not a prime number. Since

$$n^2 + 5n + 6 = (n+2)(n+3),$$

and since each factor is greater than 1, the number $9n^2 + 5n + 6$ is not a prime number.

c Negation: For all $x \in \mathbb{R}$, we have $2 + x^2 \neq 1 - x^2$ Proof: Suppose that $2 + x^2 = 1 - x^2$. Rearranging the equation gives,

$$2 + x^2 = 1 - x^2 \ 2x^2 = -1 \ x^2 = -rac{1}{2},$$

which is impossible since $x^2 \geq 0$.

- **6 a** Let $a=\sqrt{2}$ and $b=\sqrt{2}$. Then clearly each of a and b are irrational, although ab=2 is not.
 - **b** Let $a=\sqrt{2}$ and $b=-\sqrt{2}$. Then clearly each of a and b are irrational, although a+b=0 is not.
 - **c** Let $a=\sqrt{2}$ and $b=\sqrt{2}$. Then clearly each of a and b are irrational, although $\frac{a}{b}=1$ is not.
- **7 a** If a is divisible by 4 then a=4k for some $k\in\mathbb{Z}$. Therefore,

$$a^2 = (4k)^2 = 16k^2 = 4(4k^2)$$

is divisible by 4.

- **b** Converse: If a^2 is divisible by 4 then a is divisible by 4. This is clearly not true, since $2^2 = 4$ is divisible by 4, although 2 is not.
- a If a-b is divisible by 3 then a-b=3k for some $k\in\mathbb{Z}.$ Therefore, $a^2-b^2=(a-b)(a+b)=3k(a+b)$

is divisible by ${f 3}.$

- **b** Converse: If a^2-b^2 is divisible by 3 then a-b is divisible by 3. The converse is not true, since $2^2-1^2=3$ is divisible by 3, although 2-1=1 is not.
- **9 a** This statement is not true since for all $a,b\in\mathbb{R}$,

$$a^2-2ab+b^2=(a-b)^2\ge 0>-1.$$

b This statement is not true since for all $x \in \mathbb{R}$, we have,

$$x^{2} - 4x + 5 = x^{2} - 4x + 4 - 4 + 5$$

= $(x - 2)^{2} + 1$
 ≥ 1
 $> \frac{3}{4}$.

10a The numbers can be paired as follows:

$$16 + 9 = 25,$$
 $15 + 10 = 25$

$$14 + 11 = 25, \qquad 13 + 12 = 25$$

 $1+8=9, \qquad 2+7=9,$ 4+5=9,3+6=9.

We now list each number, in descending order, with each of its potential pairs.

Notice that the numbers 2 and 9 must be paired with 7. Therefore, one cannot pair all numbers in the required fashion.

11 If we let x = c, then

1

$$f(c) = ac^2 + bc + c = c(ac + b + 1)$$

is divisible by $c \geq 2$.